A Meta-Heuristic Optimization Approach for Content Based Image Retrieval using Relevance Feedback Method
نویسندگان
چکیده
With the potential growth of multimedia hardware and applications, the machines have to realize the information by adapting to the internal information. An adaptive content based image retrieval (CBIR) approach based on relevance feedback and Firefly algorithm is proposed in this paper. In addition to the color descriptor, wavelet-based texture descriptor is considered to improve the retrieval performance. Feature extraction has been done with the Euclidean distance estimation between the pixels; relevance feedback (RF) based approach but all concerns with the extraction of image accuracy. This research work has a focused approach to increase the performance by optimizing image feature by adopting with the firefly algorithm (FA). The experimental results compared with the other optimization algorithms like particle swarm optimization and genetic algorithm demonstrate the feasibility of the approach. Index Terms — Content-based image retrieval, Relevance Feedback, Firefly Algorithm, color descriptor, texture descriptor.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملParticle Swarm Optimization for Automatic Selection of Relevance Feedback Heuristics
Relevance feedback (RF) is an iterative process which refines the retrievals by utilizing user’s feedback marked on retrieved results. Recent research has focused on the optimization for RF heuristic selection. In this paper, we propose an automatic RF heuristic selection framework which automatically chooses the best RF heuristic for the given query. The proposed method performs two learning t...
متن کاملRhetorical based Music-Inspired Optimization Algorithm: Harmony-TABU for Document Retrieval using Relevance Feedback Approach
Harmony search (HS) is a meta-heuristic algorithm mimicking the improvisation process of musicians. This paper arranges the basic structure of the HS algorithm and customizes the algorithm for clustering optimization problems. We propose novel clustering algorithm based on Harmony Search (HS) optimization method that deals with document clustering. By modeling Retrieval as an optimization probl...
متن کامل